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Figure 1. Change of the integrated first-order constants kt and ka with 
the progress of the reaction of 0.002 M 2 in the presence of 0.004 M 
2,6-Iutidine in TFE at 49.6 0C: A, /t, in the presence of 0.0092 M Bu4NBr; 
B, ki without added Br"; C, ka without added Br -; D, ka in the presence 
of 0.01 M Bu4NBr. 

9-Anisoylanthracene (5) is formed at higher reaction tem­
perature. 

The loss of optical activity is a first-order process, both in 
the absence (line C) and in the presence (line D) of 0.01 M 
Bu4NBr. The 105 ka values are 3.57 and 3.71 s_l, respectively, 
almost identical with kt°. 

Loss of optical activity by a rate-determining ionization of 
the secondary hydroxy group (route B, Scheme I) is excluded 
for three reasons: (i) by the fit of the experimental points to line 
B which was calculated by using kt° and a for the bromide 
ionization model; (ii) by the similarity of fct° for 2 and for 1 
(Art°(l) = 1.08 X 10-5 S"1 in TFE at 35 0C15); (iii) since the 
rate constant for the rearrangement of the hydrogen analogue 
6 to a 9-substituted anthracene, which presumably proceeds 
via an initial ionization of the hydroxy group to the ion 7, is 
&rear = 8.75 X 1O-6 s_1, i.e., ~4 times lower than kt° for 
2.16 

AnC(OCH2CF, ,)2 COAn 

rate of formation of the vinylic solvolysis product. 
The present work confirms the applicability of the ka-kt 

probe for evaluating the extent of ion-pair return in vinylic 
solvolysis. The results agree with previous results that ion-pair 
return in a-arylvinyl cations is not very extensive in moderate 
to good ionizing solvents.18 

If a similar behavior would be observed for other 9-(a-
bromo-/?-substituted arylidene)-10-hydroxy-9,10-dihydro-
anthracenes, a comparison of the resulting a values would 
•immediately give the selectivity relationship governing the 
behavior of solvolytically generated sterically similar free vinyl 
cations. The solvolysis of 2 and related optically active vinylic 
systems in solvents where ka > kt is under active study. 
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The extent of common ion rate depression, together with the 
identity of kt° and ka within the experimental error,17 excludes 
both product formation from ion pairs and ion-pair return with 
racemization in TFE. Hence, the solvolysis proceeds by route 
A of Scheme I via the nonchiral ion 3. Steps k\, k-\, and ki 
amount to Ingold's simplified ionization-solvolysis scheme.63 

The isolation of 4 indicates that k^ is fast compared with the 

On the Reported Selectivity of Olefin Bromination 

Sir: 
In a recent issue of the Journal of the American Chemical 

Society there appeared a report about a novel selective bro-
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mination agent consisting of bromine adsorbed on 5-A mo­
lecular sieves.1 This selective reagent was claimed to be capable 
of differentiating between a double bond located in a sterically 
unhindered linear side chain and one in an inaccessible position, 
such as one within an alicyclic ring. As evidence the authors 
presented two observations: (1) the selective bromination of 
styrene in the presence of cyclohexene, and (2) the absence of 
bromoacetate product when run in the presence of a small 
amount of acetic acid. 

It is most difficult to accept the interpretation of these ob­
servations as proposed by the authors, in view of the well es­
tablished fact that 5-A molecular sieves have pore openings 
too small to permit entry of branched hydrocarbons.2 Ac­
cordingly, we have observed that secondary bromides such as 
2-bromobutane are not sorbed inside 5-A sieves at room tem­
perature;3 furthermore, if bromination were occurring within 
the sieve, the products would be retained by the sieve. We be­
lieve the observations reported can be most satisfactorily ex­
plained on the basis of the well-known dichotomy associated 
with olefin halogenation in general, namely the availability of 
competitive ionic and free-radical pathways. In the case of 
olefin chlorination, Poutsma4 clearly demonstrated this duality 
of mechanism and identified the characteristics of each 
pathway. Bromination of olefins in low polarity media is also 
very sensitive to acceleration by light, hydrogen halides, and 
water and can be greatly affected by glass or silica surfaces.5 

Under ionic conditions, cyclohexene would be expected to 
halogenate faster than styrene, since styrene has been reported 
to brominate only at approximately the same rate as terminal 
olefins.6 The reverse may be expected under free-radical 
conditions since thiyl radicals, which are considered to have 
reactivities similar to bromine atoms on the basis of the es­
tablished bond dissociation energies of HSR and HBr, are 
known to add some 60 times faster to styrene than to cyclo­
hexene.7 

We have observed that, under competitive conditions in 
CCU at room temperature, cyclohexene does in fact brominate 
~ 5 times as rapidly as styrene. However, when a 1O-2 M Br2 
solution was added dropwise to an equal volume of a CCU 
solution, 0.02 M in styrene and in cyclohexene, while being 
illuminated by a photoflood lamp, the yield of 1,2-dibro-
moethylbenzene greatly exceeded (>10:1) that of 1,2-dibro-
mocyclohexane. The free-radical nature of this reaction, per­
formed in the presence of atmospheric oxygen, was confirmed 
by the detection of a third product, a-bromoacetophenone, 
formed by oxygen trapping of the intermediate j3-bromobenzyl 
radical. Further support for a free-radical mechanism under 
these bromination conditions can be found in the observation 
of two other products by GC-mass spectroscopy: 1-chloro-
2-bromoethylbenzene8 and a trace amount of 3-bromocyclo-
hexene. The former was formed by chlorine atom abstraction 
fromCCU by the |8-bromobenzyl radical, while the latter un­
doubtedly derived from allylic hydrogen atom abstraction by 
radicals. 

In view of these observations confirming the duality of 
mechanisms for olefinic halogenations, we believe the unusual 
reactivity of styrene reported for molecular sieve supported 
bromine to be due to free-radical reactions proceeding slowly 
in homogeneous solution with the small amount of soluble 
bromine in equilibrium with sorbed bromine. The absence of 
bromoacetate addition products is consistent with a free-radical 
mechanism, as such products would only be formed under ionic 
conditions.9 The presence of 5-A molecular sieves serves both 
to reduce drastically the concentration of bromine in solution 
and to initiate a free-radical chain reaction, which is not 
unexpected in view of its reported ability to catalyze the anti-
Markownikoff addition of HBr to terminal olefins.10 

Most convincing was the additional observation that, in the 
competitive 5-A-supported bromination of cyclohexene and 

4,4-dimethylhexene-l, a terminal olefin capable of partially 
penetrating the pores of the molecular sieve like styrene, but 
one much less susceptible to free-radical addition, the yield of 
dibromocyclohexene exceeded that of dibromodimethylhexane 
by a factor of 10. Since a similar ratio was observed in the 
absence of any sieves, the ionic bromination of olefins clearly 
is unaffected by the addition of 5-A molecular sieves. 
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Rate-Determining Proton Transfer to Ketenimines 

Sir: 

We report here that 7V-alkylketenimines 1 undergo rapid 
reaction in aqueous solution to form the corresponding amides 
5, the slow step at all pH's being a proton transfer from acidic 
catalysts or the solvent. The ketenimine system can therefore 
even abstract a proton from such a weakly acidic species as 
water. 

Ketenimines are heterocumulenes structurally related both 
to allenes and ketenes. Although chiral, they have not been 
resolved because of rapid nitrogen inversion.1 They are highly 
reactive2 undergoing inter alia cycloadditions and reactions 
with electrophilic and nucleophilic reagents and because of this 
they are usually generated and further reacted in situ.3 We 
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